Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Indefinite Integration PYQ



$\int f(x)\mathrm{d}x=g(x)$, then $\int {x}^5f({x}^3)\mathrm{d}x$





Go to Discussion


Solution

Quick Solution

Given:

\( \int f(x)\, dx = g(x) \)

Required: \( \int x^5 f(x^3)\, dx \)

Use substitution:

Let \( u = x^3 \Rightarrow du = 3x^2\, dx \Rightarrow dx = \frac{du}{3x^2} \)

Now rewrite the integral:

\[ \int x^5 f(x^3)\, dx = \int x^5 f(u) \cdot \frac{du}{3x^2} = \frac{1}{3} \int x^3 f(u)\, du \]

But \( x^3 = u \), so:

\[ \frac{1}{3} \int u f(u)\, du \]

Now integrate by parts or use the identity:

\[ \int u f(u)\, du = u g(u) - \int g(u)\, du \]

Final answer:

\[ \int x^5 f(x^3)\, dx = \frac{1}{3} \left[ x^3 g(x^3) - \int g(x^3) \cdot 3x^2\, dx \right] = x^3 g(x^3) - \int x^2 g(x^3)\, dx \]

\[ \boxed{ \int x^5 f(x^3)\, dx = x^3 g(x^3) - \int x^2 g(x^3)\, dx } \]



If $\int x\, \sin x\, sec^3x\, dx=\frac{1}{2}\Bigg{[}f(x){se}c^2x+g(x)\Bigg{(}\frac{\tan x}{x}\Bigg{)}\Bigg{]}+C$, then which of the following is true?





Go to Discussion


Solution



The integral $\int \sqrt{1+2 cot x(cosec x+cotx)} dx$ , $(0<x<\frac{\pi}{2})$ (where C is a constant of integration) is equal to





Go to Discussion


Solution



If , then the values of A1, A2, A3, A4 are





Go to Discussion


Solution



The value of $\int \frac{({x}^2-1)}{{x}^3\sqrt[]{2{x}^4-2{x}^2+1}}dx$





Go to Discussion


Solution



The value of $\int \sqrt{x} e^{\sqrt{x}} dx$ is equal to:





Go to Discussion


Solution



$\int {3}^{{3}^{{3}^x}}.{3}^{{3}^x}.{3}^xdx$ is equal to





Go to Discussion


Solution



The value of $\int \frac{(x+1)}{x(xe^{x}+1)} dx$ is equal to





Go to Discussion


Solution



If $\int e^{x}(f(x)-f'(x))dx=\phi(x)$ , then the value of $\int e^x f(x) dx$ is





Go to Discussion


Solution



then value of k is





Go to Discussion


Solution



Evaluate 





Go to Discussion


Solution



If $ \int \frac{xe^{x}}{\sqrt{1+e^{x}}}=f(x)\sqrt{1+e^{x}}-2log \frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1}+C$ then $f(x)$ is





Go to Discussion


Solution



NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...