Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET


Best NIMCET Coaching
Aspire Study
Online Classes, Classroom Classes
and More.

Aspire Study Library


Question Id : 4306 | Context :NIMCET 2017

Question

Let f(x) be a polynomial of degree four, having extreme value at x = 1 and x = 2. If lim, then f(2) is
🎥 Video solution / Text Solution of this question is given below:
Given it has extremum values at x=1 and x=2
⇒f′(1)=0  and  f′(2)=0
Given f(x) is a fourth degree polynomial 
Let  f(x)=a{x}^4+b{x}^3+c{x}^2+dx+e
Given 
\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3
\lim _{{x}\rightarrow0}\lbrack1+\frac{a{x}^4+b{x}^3+c{x}^2+\mathrm{d}x+e}{{x}^2}\rbrack=3
\lim _{{x}\rightarrow0}\lbrack1+a{x}^2+bx+c+\frac{d}{x}+\frac{e}{{x}^2}\rbrack=3
For limit to have finite value, value of 'd' and 'e' must be 0
⇒d=0  & e=0
Substituting x=0 in limit 
⇒ c+1=3
⇒ c=2
f^{\prime}(x)=4a{x}^3+3b{x}^2+2cx+d
x=1 and x=2 are extreme values,
⇒f^{\prime}(1)=0 and $f^{\prime}(2)=0
⇒ 4a+3b+4=0 and 32a+12b+8=0 
By solving these equations
we get, a=\frac{1}{2} and b=-2
So,
f(x)=\frac{x^{4}}{2}-2x^{3}+2x^{2}
⇒f(x)=x^{2}(\frac{x^{2}}{2}-2x+2)
⇒f(2)=2^{2}(2-4+2)
⇒f(2)=0

📲 Install Aspire Study App

Get MCA exam-wise questions, solutions, test series & updates instantly on your phone.

🚀 Install Now


Aspire Study Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Aspire Study Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.